It takes 495.0 kJ of energy to remove 1 mole of electron from an atom on the surface of sodium metal. How much energy does it take to remove a single electron from an atom on the surface of solid sodium? Energy = J. What is the maximum wavelength of light capable of doing this?

Respuesta :

Answer:

[tex]\lambda=241.9\ nm[/tex]

Explanation:

The work function of the sodium= 495.0 kJ/mol

It means that  

1 mole of electrons can be removed by applying of 495.0 kJ of energy.

Also,  

1 mole = [tex]6.023\times 10^{23}\ electrons[/tex]

So,  

[tex]6.023\times 10^{23}[/tex] electrons can be removed by applying of 495.0 kJ of energy.

1 electron can be removed by applying of [tex]\frac {495.0}{6.023\times 10^{23}}\ kJ[/tex] of energy.

Energy required = [tex]82.18\times 10^{-23}\ kJ[/tex]

Also,  

1 kJ = 1000 J

So,  

Energy required = [tex]82.18\times 10^{-20}\ J[/tex]

Also, [tex]E=\frac {h\times c}{\lambda}[/tex]

Where,  

h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]

c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]

So,  

[tex]79.78\times 10^{-20}=\frac {6.626\times 10^{-34}\times 3\times 10^8}{\lambda}[/tex]

[tex]\lambda=\frac{6.626\times 10^{-34}\times 3\times 10^8}{82.18\times 10^{-20}}[/tex]

[tex]\lambda=\frac{10^{-26}\times \:19.878}{10^{-20}\times \:82.18}[/tex]

[tex]\lambda=\frac{19.878}{10^6\times \:82.18}[/tex]

[tex]\lambda=2.4188\times 10^{-7}\ m[/tex]

Also,  

1 m = 10⁻⁹ nm

So,  

[tex]\lambda=241.9\ nm[/tex]