A box contains one yellow, two red, and three green balls. Two balls are randomly chosen without replacement. Define the following events: ????:{ One of the balls is yellow } ????:{ At least one ball is red } ????:{ Both balls are green } ????:{ Both balls are of the same color }. Find the following conditional probabilities: (a) P(BIA) (b) P(DIB) (c) P(CID)

Respuesta :

Answer and explanation:

Given : A box contains one yellow, two red, and three green balls. Two balls are randomly chosen without replacement.

To find : Define the following events and the following conditional probabilities ?

Solution :

Number of yellow balls = 1

Number of red balls = 2

Number of green balls = 3

Let A be the event that 'One of the balls is yellow'

So, [tex]P(A)=\frac{1}{6}+\frac{5}{6}\times \frac{1}{5}=\frac{1}{3}[/tex]

Let B be the event that 'At least one ball is red'

So, [tex]P(B)=1-\frac{4}{6}\times \frac{3}{5}=\frac{3}{5}[/tex]

Let C be the event that 'Both balls are green'

So, [tex]P(C)=\frac{3}{6}\times \frac{2}{5}=\frac{1}{5}[/tex]

Let D be the event that 'Both balls are of the same color'

So, [tex]P(D)=\frac{2}{6}\times \frac{1}{5}+\frac{3}{6}\times \frac{2}{5}=\frac{4}{15}[/tex]

Conditional probabilities,

a) [tex]P(B|A)[/tex]

[tex]P(B|A)=\frac{P(B\cap A)}{P(A)}[/tex]

[tex]P(B\cap A)[/tex] means one ball is yellow and one is red,

[tex]P(B|A)=\frac{\frac{1}{6}\times \frac{2}{5}}{\frac{1}{3}}[/tex]

[tex]P(B|A)=\frac{\frac{1}{15}}{\frac{1}{3}}[/tex]

[tex]P(B|A)=\frac{3}{15}[/tex]

[tex]P(B|A)=\frac{1}{5}[/tex]

b) [tex]P(D|B)[/tex]

[tex]P(D|B)=\frac{P(D\cap B)}{P(B)}[/tex]

[tex]P(D\cap B)[/tex] means both ball are red,

[tex]P(D|B)=\frac{\frac{2}{6}\times \frac{1}{5}}{\frac{3}{5}}[/tex]

[tex]P(D|B)=\frac{\frac{1}{15}}{\frac{3}{5}}[/tex]

[tex]P(D|B)=\frac{5}{15\times 3}[/tex]

[tex]P(D|B)=\frac{1}{9}[/tex]

c) [tex]P(C|D)[/tex]

[tex]P(C|D)=\frac{P(C\cap D)}{P(D)}[/tex]

[tex]P(C\cap D)[/tex] means both ball are green,

[tex]P(C|D)=\frac{\frac{3}{6}\times \frac{2}{5}}{\frac{4}{15}}[/tex]

[tex]P(C|D)=\frac{\frac{1}{5}}{\frac{4}{15}}[/tex]

[tex]P(C|D)=\frac{3}{4}[/tex]

Otras preguntas