Answer:
The molecules of dopamine would be produced in a rat after 60 seconds of a 3.0 mg/kg dose of cocaine is [tex]2.258\times 10^{12} molecules[/tex].
Explanation:
Concentration of dopamine = 0.75 μM = [tex]7.5\times 10^{-7} M[/tex]
1 μM = [tex]10^{-6} M[/tex]
Volume of the brain in which dopamine is produced = [tex]V=5.00 mm^3[/tex]
[tex]1 mm^3=10^{-6} L[/tex]
[tex]V = 5.00\times 10^{-6} L[/tex]
Moles of dopamine = n
[tex]Concentration=\frac{moles}{Volume}[/tex]
[tex]7.5\times 10^{-7} M=\frac{n}{5.00\times 10^{-6} L}[/tex]
[tex]n=7.5\times 10^{-7} M\times 5.00\times 10^{-6} L=3.75\times 10^{-12} mol[/tex]
[tex]1 mol = 6.022\times 10^{23} molecules[/tex]
So, molecules in [tex]3.75\times 10^{-12} mol[/tex] of dopamine :
[tex]3.75\times 10^{-12}\times 6.022\times 10^{23}=2.258\times 10^{12} molecules[/tex]