Answer:
The minimum value is 24
Step-by-step explanation:
we know that
The "feasible region" has vertices [tex](4,5), (4,6), (7,4),(3,6)[/tex]
The objective function is [tex]C=4x+2y[/tex]
To determine the minimum value of the objective function, substitute the value of x and the value of y of each vertex in the objective function and then compare the values
1) For (4,5)
x=4,y=5
[tex]C=4(4)+2(5)=26[/tex]
2) For (4,6)
x=4,y=6
[tex]C=4(4)+2(6)=28[/tex]
3) For (7,4)
x=7,y=4
[tex]C=4(7)+2(4)=36[/tex]
4) For (3,6)
x=3,y=6
[tex]C=4(3)+2(6)=24[/tex]
therefore
The minimum value is 24