Answer: [tex](3.4,\ 3.6)[/tex]
Step-by-step explanation:
Given : Sample size : n= 1083
The sample mean : [tex]\overline{x}=3.5[/tex]
Standard deviation : s= 1.3
Critical value for 90% confidence interval : [tex]z_{\alpha/2}=1.645[/tex]
Confidence interval for population mean is given by :-
[tex]\overline{x}\pm z_{\alpha/2}\dfrac{s}{\sqrt{n}}[/tex]
[tex]3.5\pm (1.645)\dfrac{1.3}{\sqrt{1083}}\\\\=3.5\pm0.0649822921401\\\\=3.5\pm0.06\\\\=(3.5-0.06,\ 3.5+0.06)\\\\=(3.44,\ 3.56)\approx(3.4,\ 3.6)[/tex] [Rounded to one decimal place.]
Hence, the required confidence interval : [tex](3.4,\ 3.6)[/tex]