What are the possible values of x if (4x – 5)2 = 49? Check all that apply. StartFraction negative 4 Over 5 EndFraction StartFraction negative 1 Over 2 EndFraction 3 5 7

Respuesta :

Answer:

Option 2 and 3 - 3 and [tex]-\frac{1}{2}[/tex]

Step-by-step explanation:

Given : Equation [tex](4x-5)^2=49[/tex]

To find : What are the possible values of x ?

Solution :

Equation [tex](4x-5)^2=49[/tex]

Taking root both side,

[tex]\sqrt{(4x-5)^2}=\sqrt{49}[/tex]

[tex](4x-5)=\pm 7[/tex]

Taking [tex]4x-5=7[/tex]

[tex]4x=7+5[/tex]

[tex]4x=12[/tex]

[tex]x=\frac{12}{4}[/tex]

[tex]x=3[/tex]

Taking [tex]4x-5=-7[/tex]

[tex]4x=-7+5[/tex]

[tex]4x=-2[/tex]

[tex]x=-\frac{2}{4}[/tex]

[tex]x=-\frac{1}{2}[/tex]

The possible values of x are 3 and [tex]-\frac{1}{2}[/tex]

Therefore, option 2 and 3 are correct.

The possible values of x are; x = 3 or x = -1/2

Solving Equations

The given equation is; (4x – 5)². = 49

By taking the square root of both sides; we have;

4x -5 = √49

4x -5 = ±7

4x = ±7 +5

Therefore; 4x = 12 or -2

x = 3 or x = -1/2

Read more on equations;

https://brainly.com/question/2972832