Answer:
Part a)
[tex]A_x = 18.03 km[/tex]
[tex]A_y = - 18.03[/tex]
[tex]B_x = 21 km[/tex]
[tex]B_y = 36.4 km[/tex]
Part b)
[tex]R_x = 39.03 km[/tex]
[tex]R_y = 18.37 km[/tex]
Part c)
[tex]R = 43.13 km[/tex]
[tex]\theta = 25.2 degree[/tex]North of East
Explanation:
Part a)
Hiker's displacement on first day of the motion is given as
[tex]A_x = 25.5 cos45[/tex]
[tex]A_x = 18.03 km[/tex]
[tex]A_y = - 25.5 sin45[/tex]
[tex]A_y = -18.03 km[/tex]
His displacement on second day
[tex]B_x = 42 cos60[/tex]
[tex]B_x = 21 km[/tex]
[tex]B_y = 42 sin60[/tex]
[tex]B_y = 36.4 km[/tex]
Part b)
Now hiker's net displacement along East
[tex]R_x = A_x + B_x[/tex]
[tex]R_x = 18.03 + 21[/tex]
[tex]R_x = 39.03 km[/tex]
[tex]R_y = A_y + B_y[/tex]
[tex]R_y = -18.03 + 36.4[/tex]
[tex]R_y = 18.37 km[/tex]
Part c)
Magnitude of net displacement is given as
[tex]R = \sqrt{R_x^2 + R_y^2}[/tex]
[tex]R = \sqrt{18.37^2 + 39.03^2}[/tex]
[tex]R = 43.13 km[/tex]
direction of the net displacement is given as
[tex]tan\theta = \frac{R_y}{R_x}[/tex]
[tex]tan\theta = \frac{18.37}{39.03}[/tex]
[tex]\theta = 25.2 degree[/tex]North of East