Respuesta :
Answer:
[tex]x=1\\\\y=1[/tex]
Step-by-step explanation:
Given the following system of equations:
[tex]\left \{ {{\frac{3}{8}x+\frac{1}{3}y=\frac{17}{24} } \atop {x + 7y = 8}} \right.[/tex]
The procedure to solve using the Substitution method, is:
- Solve for "x" from the second equation:
[tex]x + 7y = 8\\\\x=8-7y[/tex]
- Substitute it into the first equation and solve for "y":
[tex]\frac{3}{8}(8-7y)+\frac{1}{3}y=\frac{17}{24}\\\\3-\frac{21}{8}y+\frac{1}{3}y=\frac{17}{24}\\\\-\frac{55}{24}y=-\frac{55}{24}\\\\y=1[/tex]
- Substitute these value into the second equation of the system of solve for "x":
[tex]x + 7(1)= 8\\\\x=8-7\\\\x=1[/tex]
Answer:
The value of [tex]x=1[/tex] and [tex]y=1.[/tex]
Step-by-step explanation:
Given information:
The system of equation;
[tex](3/6)x+(1/3)y=(17/24)\\[/tex]
And; [tex]x+7y=8[/tex]
Solve the above equation by substitution method:
[tex]x+7y=8\\x=8-7y[/tex]
on substituting:
[tex](3/8)(8-7y)+(1/3)y=(17/24)[/tex]
[tex]3-(21/8)y+(1/3)y=(17/24)\\\\(-55/24)y=(-55/24)\\\\y=1[/tex]
Now , substitute the value of x in any of the given equation;
[tex]x+7y=8\\x=8-(7 \times 1)\\x=1[/tex]
Hence, the value of [tex]x=1[/tex] and [tex]y=1.[/tex]
For more information visit:
https://brainly.com/question/12221912?referrer=searchResults