Solve the system of equations by substitution. x + y = A system of equations. StartFraction 3 over 8 EndFraction x plus StartFraction one-third EndFraction y equals StartFractions 17 over 24 EndFraction. x + 7y = 8

Respuesta :

Answer:

[tex]x=1\\\\y=1[/tex]

Step-by-step explanation:

Given the following system of equations:

[tex]\left \{ {{\frac{3}{8}x+\frac{1}{3}y=\frac{17}{24} } \atop {x + 7y = 8}} \right.[/tex]

The procedure to solve using the Substitution method, is:

- Solve for "x" from the second equation:

[tex]x + 7y = 8\\\\x=8-7y[/tex]

- Substitute it into the first equation and solve for "y":

[tex]\frac{3}{8}(8-7y)+\frac{1}{3}y=\frac{17}{24}\\\\3-\frac{21}{8}y+\frac{1}{3}y=\frac{17}{24}\\\\-\frac{55}{24}y=-\frac{55}{24}\\\\y=1[/tex]

- Substitute these value into the second equation of the system of solve for "x":

[tex]x + 7(1)= 8\\\\x=8-7\\\\x=1[/tex]

Answer:

The value of [tex]x=1[/tex] and [tex]y=1.[/tex]

Step-by-step explanation:

Given information:

The system of equation;

[tex](3/6)x+(1/3)y=(17/24)\\[/tex]

And; [tex]x+7y=8[/tex]

Solve the above equation by substitution method:

[tex]x+7y=8\\x=8-7y[/tex]

on substituting:

[tex](3/8)(8-7y)+(1/3)y=(17/24)[/tex]

[tex]3-(21/8)y+(1/3)y=(17/24)\\\\(-55/24)y=(-55/24)\\\\y=1[/tex]

Now , substitute the value of x in any of the given equation;

[tex]x+7y=8\\x=8-(7 \times 1)\\x=1[/tex]

Hence, the value of [tex]x=1[/tex] and [tex]y=1.[/tex]

For more information visit:

https://brainly.com/question/12221912?referrer=searchResults

Otras preguntas