Answer:
Velocity,v = 0.323 m/s
Explanation:
The acceleration of a particle is given by :
[tex]a=-(0.1+sin\dfrac{x}{b})[/tex]
b = 0.8 m when x = 0
Since, [tex]a=v\dfrac{dv}{dx}[/tex]
[tex]v\dfrac{dv}{dx}=-(0.1+sin\dfrac{x}{b})[/tex]
[tex]\int{v.dv}=\int{-(0.1+sin\dfrac{x}{b})}.dx[/tex]
[tex]\dfrac{v^2}{2}=-[0.1x-0.8cos\dfrac{x}{0.8}]+c[/tex]
At x = 0, v = 1 m/s
[tex]\dfrac{1}{2}=0.8+c[/tex]
[tex]c=-0.3[/tex]
[tex]\dfrac{v^2}{2}=-[0.1x-0.8cos\dfrac{x}{0.8}]-0.3[/tex]
At x = -1 m
[tex]\dfrac{v^2}{2}=-0.1(-1)+0.8cos\dfrac{(-1)}{0.8}-0.3[/tex]
[tex]{v^2}=0.1045[/tex]
v = 0.323 m/s
So, the velocity of the particle is 0.323 m/s. Hence, this is the required solution.