Answer:
(C) 3.65
Explanation:
The expression for the Keq for the given reaction is:
[tex]2Cl_2_{(g)}+2H_2O_{(g)}\rightleftharpoons 4HCl_{(g)}+O_2_{(g)}[/tex]
[tex]K_{eq}=\frac {[HCl_{(g)}]^4[O_2_{(g)}]}{[Cl_2_{(g)}]^2[H_2O_{(g)}]^2}=7.52\times 10^{-2}[/tex]
The expression for the K'eq for the given reaction is:
[tex]2HCl_{(g)}+\frac {1}{2}O_2_{(g)}\rightleftharpoons Cl_2_{(g)}+H_2O_{(g)}[/tex]
[tex]K'_{eq}=\frac {[Cl_2_{(g)}][H_2O_{(g)}]}{[HCl_{(g)}]^2[O_2_{(g)}]^{\frac {1}{2}}}[/tex]
Reciprocal of keq and taking square root of it, we get K'eq
So,
[tex]K'_{eq}=\frac {[Cl_2_{(g)}][H_2O_{(g)}]}{[HCl_{(g)}]^2[O_2_{(g)}]^{\frac {1}{2}}}=\sqrt {\frac {1}{K_{eq}}}[/tex]
[tex]K'_{eq}=\frac {[Cl_2_{(g)}][H_2O_{(g)}]}{[HCl_{(g)}]^2[O_2_{(g)}]^{\frac {1}{2}}}=\sqrt {\frac {1}{7.52\times 10^{-2}}}=3.65[/tex]