A benchmark index has three stocks priced at $29, $52, and $62. The number of outstanding shares for each is 380,000 shares, 465,000 shares, and 613,000 shares, respectively. If the market value weighted index was 850 yesterday and the prices changed to $29, $49, and $65 today, what is the new index value?

Respuesta :

Answer:

index value = 855.15

Explanation:

given data

stocks priced = $29

stocks priced = $52

stocks priced = $62

shares = 380,000

shares = 465,000

shares = 613,000

change price = $29

change price = $49

change price = $65

solution

we know

share (x)          price (y)       change price (z)         (x) (y)                 (x) (z)

380,000          $29                   $29                   11020000          11020000

465,000          $52                   $49                   24180000          22785000

613,000           $62                   $65                   38006000        39845000

total                                                                      73206000        73650000

so  new index value is

index value = [tex]\frac{850*73650000}{73206000}[/tex]

index value = 855.15