A 50.0 mL sample of 0.600 M calcium hydroxide is mixed with 50.0 mL sample of 0.600 M hydrobromic acid in a Styrofoam cup. The temperature of both solutions before mixing was 23.00°C, and it rises to 26.00°C after the acid-base reaction. What is the enthalpy change for the reaction per mole of salt formed? Assume the densities of the solutions are all 1.08 g/mL and the specific heat capacities of the solutions are 4.18 J/gK. Use the correct sign.

Respuesta :

Explanation:

The reaction equation will be as follows.

     [tex]Ca(OH)_{2}(aq) + 2HBr(aq) \rightarrow CaBr_{2}(aq) + 2H_{2}O(l)[/tex]

So, according to this equation, 1 mole [tex]Ca(OH)_{2}[/tex] = 2 mol HBr = 1 mol [tex]CaBr_{2}[/tex]

Therefore, calculate the number of moles of calcium hydroxide as follows.

     No. of moles of [tex]Ca(OH)_{2}[/tex] = [tex]V \times Molarity[/tex]

                                    = [tex]50 \times 0.6[/tex]

                                    = 30 mmol

Similarly, calculate the number of moles of HBr as follows.

        No. of moles of HBr = [tex]M \times V[/tex]

                                          = [tex]50 \times 0.6[/tex]

                                          = 30 mmol

This means that the limiting reactant is HBr.

So, no. of moles of [tex]CaBr_{2}[/tex] = [tex]30 \times \frac{1}{2}[/tex]

                                                     = 15 mmol

Hence, calculate the amount of heat released as follows.

                Heat released in the reaction(q) = [tex]m \times s \times \Delta T[/tex]

as,    m = mass of solution

and,             Density = [tex]\frac{mass}{volume}[/tex]

or,                  mass = Density × Volume

                               = 1.08 g/ml \times (50 + 50) ml

                               = 108 g

where,    s = specific heat of solution = 4.18 j/g.k

and,        change in temperature [tex]\Delta T[/tex] = [tex](26 - 23)^{o}C[/tex]

                                                                 = [tex]3 ^{o}C[/tex]

Hence, the heat released will be as follows.

                   q = [tex]m \times s \times \Delta T[/tex]

                        q = [tex]108 \times 4.18 \times 3^{o}C[/tex]

                           = 1354.32 joule

or,                        = 1.354 kJ       (as 1 kJ = 1000 J)    

Also,          [tex]\Delta H_{rxn}[/tex] = [tex]\frac{-q}{n}[/tex]

                              = [tex]\frac{-1.354}{15 \times 10^{-3}}[/tex]

                              = -90.267 kJ/mol

Thus, we can conclude that the enthalpy change for the given reaction is -90.267 kJ/mol.