Stokes' law describes sedimentation of particles in liquids and can be used to measure viscosity. Particles in liquids achieve terminal velocity quickly. One can measure the time it takes for a particle to fall a certain distance and then use Stokes' law to calculate the viscosity of the liquid. Suppose a steel ball bearing (density 7.8 ✕ 103 kg/m3, diameter 2.4 mm) is dropped in a container of motor oil. It takes 10 s to fall a distance of 0.75 m. Calculate the viscosity (in kg/(m·s)) of the oil.

Respuesta :

Answer:[tex]\eta =325.73\times 10^{-3}=0.325 kg/m-s[/tex]

Explanation:

Given

density[tex](\rho )=7.8\times 10^3 kg/m^3[/tex]

Diameter(d)=2.4 mm

time taken=10 s

Distance moved(h)=0.75 m

At terminal velocity Drag force is equal to Weight

[tex]F_D=mg[/tex]

Volume of ball[tex]=\frac{4\pi r^3}{3}=7.23 mm^3[/tex]

Mass of ball[tex]=\rho v=7.23\times 7.8\times 10^3\times 10^{-9}=56.39\times 10^{-6} kg[/tex]

[tex]F_D=56.39\times 10^{-6}\times 9.8=552.66\times 10^{-6} N[/tex]

Also for spherical bodies drag force is equal to Stock Force

[tex]F_s=6\times \pi \times \eta \times r\times v_r[/tex]

Where [tex]v_r[/tex]= Terminal velocity

[tex]v=\frac{h}{t}=\frac{0.75}{10}=0.075 m/s[/tex]

[tex]552.66\times 10^{-6}=6\times pi\times \eta \times \1.2\times 10^{-3}\times 0.075[/tex]

[tex]\eta =325.73\times 10^{-3}=0.325 kg/m-s[/tex]