Answer:
a) n = 100
[tex]\bar{x} = 58[/tex]
s = 8
Confidence interval = 95%
Z at 95% = 1.96
Confidence interval formula : [tex]\bar{x}-z\frac{s}{\sqrt{n}}[/tex] to [tex]\bar{x}-z\frac{s}{\sqrt{n}}[/tex]
Substitute the values :
Confidence interval : [tex]58-1.96 \times \frac{8}{\sqrt{100}}[/tex] to [tex]58+1.96 \times \frac{8}{\sqrt{100}}[/tex]
Confidence interval : [tex]56.432[/tex] to [tex]59.568[/tex]
b)n = 200
[tex]\bar{x} = 62[/tex]
s =11
Confidence interval = 90%
Z at 90% = 1.64
Confidence interval formula : [tex]\bar{x}-z\frac{s}{\sqrt{n}}[/tex] to [tex]\bar{x}-z\frac{s}{\sqrt{n}}[/tex]
Substitute the values :
Confidence interval : [tex]62-1.64 \times \frac{11}{\sqrt{200}}[/tex] to [tex]62+1.64 \times \frac{11}{\sqrt{200}}[/tex]
Confidence interval : [tex]60.724[/tex] to [tex]63.275[/tex]