Respuesta :
= (3.6/1.8) ( 10^-5/10^2)
= (2)(10^-7)
= 2/10^7
= 2/10000000
= .0000002
= (2)(10^-7)
= 2/10^7
= 2/10000000
= .0000002
Answer:
The standard form of [tex]\left(3.6 \times 10^{-5}\right) \div\left(1.8 \times 10^{2}\right)[/tex] is 0.0000002
Solution:
We have to write [tex]\left(3.6 \times 10^{-5}\right) \div\left(1.8 \times 10^{2}\right)[/tex] in standard form.
[tex]=\frac{3.6 \times 10^{-5}}{1.8 \times 10^{2}}[/tex]
By dividing 3.6 by 1.8 we get “2”, hence the above equation becomes,
[tex]=\frac{2 \times 10^{-5}}{10^{2}}[/tex]
We know that [tex]\frac{x^{a}}{x^{b}}=x^{a-b}[/tex]
Therefore the above equation becomes,
[tex]=2 \times 10^{-5-2}[/tex]
[tex]=2 \times 10^{-7}[/tex]
since the exponent of 10 is negative , therefore 7 zeros are written on the left hand side of the number.
= 0.0000002
Hence the standard form of [tex]\left(3.6 \times 10^{-5}\right) \div\left(1.8 \times 10^{2}\right)[/tex] is 0.0000002