Respuesta :

Answer:

[tex]x = \frac{10}{2}[/tex] ± [tex]\frac{\sqrt{60}}{2}[/tex]

Step-by-step explanation:

[tex]x^{2} - 10x + 25 = 35[/tex]

[tex]x^{2} -10x - 10[/tex] Subtract 35 from both sides to make the equation equal to zero

Quadratic equation is needed to solve this

[tex]\frac{-b ± \sqrt{b^{2}-4(a)(c)}}{2a}[/tex]

[tex]ax^{2} + bx + c[/tex]

a = 1

b = -10

c = -10

[tex]\frac{-(-10) ± \sqrt{(-10)^{2}-4(1)(-10)}}{2(1)}[/tex]

[tex]\frac{10 ± \sqrt{100-4(-10)}}{2}[/tex]

[tex]\frac{10 ± \sqrt{100-(-40)}}{2}[/tex]

[tex]\frac{10 ± \sqrt{100 + 40}}{2}[/tex]

[tex]\frac{10 ± \sqrt{60}}{2}[/tex]

[tex]x = \frac{10}{2}[/tex]± [tex]\frac{\sqrt{60}}{2}[/tex]