Answer:
[tex]x = \frac{10}{2}[/tex] ± [tex]\frac{\sqrt{60}}{2}[/tex]
Step-by-step explanation:
[tex]x^{2} - 10x + 25 = 35[/tex]
[tex]x^{2} -10x - 10[/tex] Subtract 35 from both sides to make the equation equal to zero
Quadratic equation is needed to solve this
[tex]\frac{-b ± \sqrt{b^{2}-4(a)(c)}}{2a}[/tex]
[tex]ax^{2} + bx + c[/tex]
a = 1
b = -10
c = -10
[tex]\frac{-(-10) ± \sqrt{(-10)^{2}-4(1)(-10)}}{2(1)}[/tex]
[tex]\frac{10 ± \sqrt{100-4(-10)}}{2}[/tex]
[tex]\frac{10 ± \sqrt{100-(-40)}}{2}[/tex]
[tex]\frac{10 ± \sqrt{100 + 40}}{2}[/tex]
[tex]\frac{10 ± \sqrt{60}}{2}[/tex]
[tex]x = \frac{10}{2}[/tex]± [tex]\frac{\sqrt{60}}{2}[/tex]