i WILL MARK BRAINLIEST PLEASE HELP

Answer:
1) y=-2/5x-2
2) y=-5/2x-3
Step-by-step explanation:
Question 1:
We know that the line intersects the X-axis at the point (-5,0) and the Y-axis at the point (0,-2). Lets calculate the slope of the line and put it ins lope intercept form.
Slope = y2-y1/x2-x1
1) Put the two points in slope form
(-2-0)/(0--5)
2) Solve:
Slope = -2/5
We know that the y-intercept is -2, so lets plug that into slope intercept form including our newly found slope:
y=-2/5x-2
Question 2:
y-7=-5/2(x+4)
1) Distribute -5/2 to x and 4:
y-7=-5/2x-10
2) Add 7 to both sides:
y=-5/2x-3
Answer: 3. [tex]y=\dfrac{-2}{5}x-2[/tex]
4.[tex]y=\dfrac{-5}{2}(x)-3[/tex]
Step-by-step explanation:
Equation of line that passes two points (a,b) and (c,d) :
[tex](y-b)=\dfrac{d-b}{c-a}(x-a)[/tex]
3. Given : x-intercept = -5 i.e. (-5,0)
y-intercept= -2 i.e. (0,-2)
Equation of line that passes two points (-5,0) and (0,-2) :
[tex](y-(-2))=\dfrac{-2-0}{0-(-5)}(x-0)[/tex]
[tex]y+2=\dfrac{-2}{5}x[/tex]
[tex]y=\dfrac{-2}{5}x-2[/tex]
4. Given equation: [tex](y-7)=\dfrac{-5}{2}(x+4)[/tex]
Equation a line in slope intercept form : [tex]y=mx+c[/tex]
Consider [tex](y-7)=\dfrac{-5}{2}(x+4)[/tex]
Add 7 on both sides , we get
[tex]y=\dfrac{-5}{2}(x+4)+7[/tex]
[tex]y=\dfrac{-5}{2}(x)+\dfrac{-5}{2}(4)+7[/tex]
[tex]y=\dfrac{-5}{2}(x)-10+7[/tex]
[tex]y=\dfrac{-5}{2}(x)-3[/tex]
∴ Slope intercept form of line : [tex]y=\dfrac{-5}{2}(x)-3[/tex]