Respuesta :

Answer:

1) y=-2/5x-2

2) y=-5/2x-3

Step-by-step explanation:

Question 1:

We know that the line intersects the X-axis at the point (-5,0) and the Y-axis at the point (0,-2). Lets calculate the slope of the line and put it ins lope intercept form.

Slope = y2-y1/x2-x1

1) Put the two points in slope form

(-2-0)/(0--5)

2) Solve:

Slope = -2/5

We know that the y-intercept is -2, so lets plug that into slope intercept form including our newly found slope:

y=-2/5x-2

Question 2:

y-7=-5/2(x+4)

1) Distribute -5/2 to x and 4:

y-7=-5/2x-10

2) Add 7 to both sides:

y=-5/2x-3

Answer: 3. [tex]y=\dfrac{-2}{5}x-2[/tex]

4.[tex]y=\dfrac{-5}{2}(x)-3[/tex]  

Step-by-step explanation:

Equation of line that passes two points (a,b) and (c,d) :

[tex](y-b)=\dfrac{d-b}{c-a}(x-a)[/tex]

3. Given : x-intercept = -5 i.e. (-5,0)

y-intercept= -2 i.e.  (0,-2)

Equation of line that passes two points (-5,0) and (0,-2) :

[tex](y-(-2))=\dfrac{-2-0}{0-(-5)}(x-0)[/tex]

[tex]y+2=\dfrac{-2}{5}x[/tex]

[tex]y=\dfrac{-2}{5}x-2[/tex]

4. Given equation:  [tex](y-7)=\dfrac{-5}{2}(x+4)[/tex]

Equation a line in slope intercept form : [tex]y=mx+c[/tex]

Consider [tex](y-7)=\dfrac{-5}{2}(x+4)[/tex]

Add 7 on both sides , we get

[tex]y=\dfrac{-5}{2}(x+4)+7[/tex]

[tex]y=\dfrac{-5}{2}(x)+\dfrac{-5}{2}(4)+7[/tex]  

[tex]y=\dfrac{-5}{2}(x)-10+7[/tex]  

[tex]y=\dfrac{-5}{2}(x)-3[/tex]  

∴ Slope intercept form of line : [tex]y=\dfrac{-5}{2}(x)-3[/tex]