A signal f(t) = 6t and a second signal g(t) = t are convolved. Using the fundamental definition of convolutionA signal f(t) = 6t and a second signal g(t) = t ar find the value of the convolution at t = 4 seconds.
Hint: Because convolution is a linear operator and obeys the principle of superposition, the convolution of k2are constant multipliers of . (Points : 5) 24
64
48
96

Respuesta :

Answer:

64

Explanation:

The convolution of two functions is given by:

[tex](f*g)(t)=\int\limits^t_0 f(\tau)g(t-\tau) \, d\tau[/tex]  (1)

In this case:

[tex]f(t)=6t\\g(t)=t[/tex]

So, let's replace the functions in the equation (1):

[tex](f*g)(t)=\int\limits^t_0 6\tau*(t-\tau) \, d\tau[/tex]

[tex](f*g)(t)=\int\limits^t_0 6\tau t \, d\tau - \int\limits^t_0 6\tau^{2}   \, d\tau[/tex]

Integrating with respect to τ

[tex]6t(\frac{\tau^{2} }{2} )\left \{ {{t=t} \atop {t=0}} \right. - 6(\frac{\tau^{3} }{3} ) \left \{ {{t=t} \atop {t=0}} \right.[/tex]

Evaluating the integrals:

[tex](f*g)(t)=3t^{3} -2t^{3} =t^{3}[/tex]

Finally evaluating f*g at t=4:

[tex](f*g)(4)=4^{3} =64[/tex]