A picture is 4.25 inches wide and 7.75 inches tall. It is mounted in a frame with a border of x inches wide on all sides. If the area of the shaded border is 45 inches squared, what is its width x?

Respuesta :

ANSWER:  

Width of border is 1.5 inches            

SOLUTION:

Given,  

Width of the photo graph [tex]\left(\mathrm{w}_{1}\right)[/tex] = 4.25 inches

Height of the photo graph [tex]\left(\mathrm{h}_{1}\right)[/tex] = 7.75 inches  

And it is mounted in a frame with border of x inches, so the dimensions after mounting will be

Width after mounting [tex]\left(\mathrm{W}_{2}\right)[/tex] = (4.25 + x + x) [ since, two sides of photograph will have borders

Height after mounting [tex]\left(\mathrm{h}_{2}\right)[/tex] = (7.75 + x + x) [ since, two sides of photograph will have borders  

Area of border = 45 square inches

As we all know that, photograph will be in rectangular shape,  

Area of photograph = [tex]\mathrm{w}_{1} \times \mathrm{h}_{1}[/tex]

[tex]= 4.25 \times 7.75[/tex]

[tex]=32.9375 \mathrm{in}^{2}[/tex]

Area of photograph after mounting = [tex]\mathrm{w}_{2} \times \mathrm{h}_{2}[/tex]

[tex]= (4.25+2x) \times (7.75+2x)[/tex]

[tex]= (4.25 \times 7.75) + (4.25 + 7.75) \times 2x + (2x \times 2x)[/tex]

[tex]=4 x^{2}+24 x+32.9375 \text { in }^{2}[/tex]

Now, area of border = Area of photograph after mounting - Area of photograph before mounting

[tex]45=4 x^{2}+24 x+32.9375-32.9375[/tex]

[tex]45=4 x^{2}+24 x[/tex]

[tex]x^{2}+6 x-\frac{45}{4}=0[/tex]   [by dividing the equation with 4]

[tex]x^{2}+6 x-\frac{15 \times 3}{2 \times 2}=0[/tex]

[tex]x^{2}-\left(\frac{-15}{2}+\frac{3}{2}\right) x-\frac{15 \times 3}{2 \times 2}=0[/tex]

[tex]x\left(x-\frac{3}{2}\right)+\frac{15}{2}\left(x-\frac{3}{2}\right)=0[/tex]

[tex]\left(x-\frac{3}{2}\right)\left(x+\frac{15}{2}\right)=0[/tex]

[tex]x=\frac{-15}{2} \text { or } \frac{3}{2}[/tex]

As length can’t be negative, x = [tex]\frac{3}{2} = 1.5[/tex]

Hence , the width x is 1.5 inches