Which function represents g(x), a reflection of f(x) = 4(one-half) Superscript x across the x-axis?

g(x) = −4(2)x
g(x) = 4(2)−x
g(x) = −4(one-half) Superscript x
g(x) = 4(one-half) Superscript negative x

Which function represents gx a reflection of fx 4onehalf Superscript x across the xaxis gx 42x gx 42x gx 4onehalf Superscript x gx 4onehalf Superscript negative class=

Respuesta :

Answer:

[tex]g(x)=-4(\frac{1}{2})^{x}[/tex]

Step-by-step explanation:

we have

[tex]f(x)=4(\frac{1}{2})^{x}[/tex]

we know that

The rule of the reflection across the x-axis is

(x,f(x)) ------> (x,-f(x))

therefore

[tex]g(x)=-f(x)[/tex]

[tex]g(x)=-4(\frac{1}{2})^{x}[/tex]

g(x) = −4(one-half) Superscript x

see the attached figure to better understand the problem

Ver imagen calculista

Answer:

Step-by-step explanation:

we have

we know that

The rule of the reflection across the x-axis is

(x,f(x)) ------> (x,-f(x))

therefore

g(x) = −4(one-half) Superscript x

see the attached figure to better understand the problem