Respuesta :

Answer:

The minimum value is [tex](-\frac{3}{4},-\frac{49}{8})[/tex] or  [tex](-0.75,-6.125)[/tex]

Step-by-step explanation:

we have

[tex]f(x)=2x^{2}+3x-5[/tex]

This is the equation a vertical parabola open upward

The vertex represent a minimum

The general equation in vertex form is

[tex]f(x)=a(x-h)^2+k[/tex]

where

(h,k) is the vertex

Convert the given function in vertex form

[tex]f(x)=2x^{2}+3x-5[/tex]

Factor 2

[tex]f(x)=2(x^{2}+\frac{3}{2}x)-5[/tex]

Complete the square

[tex]f(x)=2(x^{2}+\frac{3}{2}x+\frac{9}{16})-5-\frac{9}{8}[/tex]

[tex]f(x)=2(x^{2}+\frac{3}{2}x+\frac{9}{16})-\frac{49}{8}[/tex]

Rewrite as perfect squares

[tex]f(x)=2(x+\frac{3}{4})^{2}-\frac{49}{8}[/tex]

The vertex is the point [tex](-\frac{3}{4},-\frac{49}{8})[/tex]