Respuesta :

The answer must be the second one!
Good luck :)
Ver imagen vicfer119

Answer:

Graph D

Step-by-step explanation:

We are given that system of inequalities

[tex]x+3y>6[/tex]....(1)

[tex]y\geq 2x+4[/tex]...(2)

The two equations can be written as

[tex]x+3y=6[/tex]...(3)

[tex]y=2x+4[/tex]...(4)

Substitute x=0 in equation (3)

[tex]3y=6[/tex]

[tex]y=2[/tex]

Substitute y=0

[tex]x=6[/tex]

The equation x+3y=6 is passing through the points (0,2) and (6,0).

Substitute x=0 and y=0 in equation (1) then , we get

[tex]0>6[/tex]

It is not true therefore, shaded region above the line.

Substitute x=0 in equation (4)

[tex]y=4[/tex]

Substitute y=0

[tex]2x=-4[/tex]

[tex]x=-2[/tex]

The equation y=2x+4 is passing through the points (0,4) and (-2,0).

Substitute x=0 and y=0 in equation (2)

[tex]0\geq 4[/tex]

It is not true therefore, shaded region above the line.

[tex]x=6-3y[/tex]

Substitute the value of x in equation (4)

[tex]y=2(6-3y)+4[/tex]

[tex]y=12-6y+4[/tex]

[tex]y+6y=16[/tex]

[tex]7y=16[/tex]

[tex]y=\frac{16}{7}=2.29[/tex]

Substitute [tex]y=\frac{16}{7}[/tex] in equation (3)

[tex]x+\frac{48}{7}=6[/tex]

[tex]x=6-\frac{48}{7}=\frac{42-48}{7}=-\frac{6}{7}[/tex]

[tex]x=-0.86[/tex]

The two equations intersect to each other at point (-0.86,2.29).

The common region between two equations is in blue colour.

It is  solution of two inequalities equations.

Hence, graph D is true.

Ver imagen lublana