Answer:
[tex]\theta=82.87^0[/tex]
u = 44.44 m/s
Explanation:
given,
horizontal displacement = 50 m
maximum height = 100 m
initial velocity (v₀) = ?
launching angle(θ) = ?
using formula
[tex]R = \dfrac{u^2sin2\theta}{g}[/tex]........(1)
[tex]h = \dfrac{u^2sin\theta}{2g}[/tex].........(2)
dividing equation (2)/(1)
[tex]\dfrac{h}{R} = \dfrac{\dfrac{u^2sin\theta}{2g}}{\dfrac{u^2sin2\theta}{g}}[/tex]
[tex]\dfrac{h}{R} =\dfrac{sin^2\theta}{2sin2\theta}[/tex]
[tex]\dfrac{4h}{R} =tan \theta[/tex]
[tex]\theta= tan{-1}{\dfrac{4\times 100}{50}}[/tex]
[tex]\theta=82.87^0[/tex]
now using equation (2)
[tex]100 = \dfrac{u^2sin82.87^0}{2\times 9.81}[/tex]
u = 44.44 m/s