Respuesta :

Answer:

[tex]\tau=3.3*10^{-6}s[/tex]

Explanation:

Take at look to the picture I attached you, using Kirchhoff's current law we get:

[tex]C*\frac{dV}{dt}+\frac{V}{R}=0[/tex]

This is a separable first order differential equation, let's solve it step by step:

Express the equation this way:

[tex]\frac{dV}{V}=-\frac{1}{RC}dt[/tex]

integrate both sides, the left side will be integrated from an initial voltage v to a final voltage V, and the right side from an initial time 0 to a final time t:

[tex]\int\limits^V_v {\frac{dV}{V} } =-\int\limits^t_0 {\frac{1}{RC} } \, dt[/tex]

Evaluating the integrals:

[tex]ln(\frac{V}{v})=e^{\frac{-t}{RC} }[/tex]

natural logarithm to both sides in order to isolate V:

[tex]V(t)=ve^{-\frac{t}{RC} }[/tex]

Where the term RC is called time constant and is given by:

[tex]\tau=R*C=10*(0.330*10^{-6})=3.3*10^{-6}s[/tex]

Ver imagen carlos2112