Answer:
Part a)
[tex]F_n = 306 N[/tex]
Part B)
[tex]v = 12.1 m/s[/tex]
Explanation:
Part A)
At the top of the hump the force on the rider is
1) Normal force
2) weight
so here we know that
[tex]mg - F_n = \frac{mv^2}{R}[/tex]
[tex]F_n = mg - \frac{mv^2}{R}[/tex]
[tex]F_n = (100)(9.81) - \frac{100(9^2)}{12}[/tex]
[tex]F_n = 306 N[/tex]
Part B)
At the top of the loop we will have
[tex]F_n + mg = \frac{mv^2}{R}[/tex]
in order to remain in contact the normal force must be just greater than zero
so we will have
[tex]mg = \frac{mv^2}{R}[/tex]
[tex]v = \sqrt{Rg}[/tex]
[tex]v = \sqrt{15\times 9.81}[/tex]
[tex]v = 12.1 m/s[/tex]