What are the missing parts that correctly complete the proof
Given: Point P is the perpendicular bisector of AB
Prove: P is equidistant from the endpoints AB
Drag the answers into the boxes to correctly complete the proof
1. Point P is on the perpendicular bisector of AB given
2.__definition of bisector
3. 4.__all angles are congruent
5.PX=PX reflexive property of congruence
6.__SAS congruency postulate
7.__ corresponding parts of congruent triangles are congruent
8. Point P is equidistant from the endpoints of AB definition of equidistant

What are the missing parts that correctly complete the proof Given Point P is the perpendicular bisector of AB Prove P is equidistant from the endpoints AB Drag class=

Respuesta :

frika

Answer:

2. [tex]\overline{AX}\cong \overline{BX}[/tex]

3. [tex]PX \perp AB[/tex] - definition of perpendicular

4. [tex]\angle PXA \cong \angle PXB[/tex] - all right angles are congruent

6. [tex]\triangle AXP\cong \triangle BXP[/tex]

7. [tex]\overline{PA} \cong \overline{PB}[/tex]

Step-by-step explanation:

Given: Point P is the perpendicular bisector of AB

Prove: P is equidistant from the endpoints AB

Proof.

1. Point P is on the perpendicular bisector of AB - given

2.[tex]\overline{AX}\cong \overline{BX}[/tex] - definition of bisector

3. [tex]PX \perp AB[/tex] - definition of perpendicular

4.  [tex]\angle PXA \cong \angle PXB[/tex] - all right angles are congruent

5. [tex]\overline{PX} \cong \overline{PX}[/tex] - reflexive property of congruence

6. [tex]\triangle AXP\cong \triangle BXP[/tex] - SAS congruency postulate

7. [tex]\overline{PA} \cong \overline{PB}[/tex] - corresponding parts of congruent triangles are congruent

8. Point P is equidistant from the endpoints of AB - definition of equidistant