Answer:14.03 m
Explanation:
Given
initial velocity(u)=92 m/s
Launch angle[tex]=48^{\circ}[/tex]
Height of wall=15 m
Located at x=27 m
maximum height [tex]h=\frac{u^2sin^\theta }{2g}=\frac{92^2(sin48)^2}{2\times 9.8}[/tex]
[tex]h_{max}=238.48 [/tex]
We know equation of trajectory of projectile is
[tex]Y=x\tan\theta -\frac{gx^2}{2u^2(cos\theta )^2}[/tex]
for x=27 m
[tex]y=27\tan48-\frac{9.8\times 27^2}{2\times 92^2\times (cos48)^2}[/tex]
y=29.98-0.942=29.03 m
Thus it passes at a height of 29.03-15 =14.03 m above wall