Answer:29.01 s
Explanation:
Given
First two engine applies Force in same direction
Considering F be the magnitude of each force then
net Force is 2F
Let the distance travel be s
[tex]s=ut+\frac{at^2}{2}[/tex]
here [tex]a=\frac{2F}{m}[/tex]
where m is the mass of Space Probe
[tex]s=0+\frac{2F(24.4)^2}{2m}[/tex]
[tex]s=\frac{595.36F}{m}[/tex]----1
If the force actin in perpendicular direction
then [tex]F_{net}=\sqrt{F^2+F^2}=\sqrt{2F^2}[/tex]
[tex]F_{net}=\sqrt{2}F[/tex]
[tex]a=\frac{\sqrt{2}F}{m}[/tex]
[tex]s=ut+\frac{at^2}{2}[/tex]
[tex]s=0+\frac{\sqrt{2}Ft^2}{2m}[/tex]------2
From 1 & 2 we get
[tex]\frac{595.36F}{m}=\frac{\sqrt{2}Ft^2}{2m}[/tex]
t=29.01 s