Answer:
[tex]F_{net} = 232.8 N[/tex]
towards right so it is -15 degree
Explanation:
Net force in forward direction due to all three is given as
[tex]F_x = F_1 + F_2cos45 + F_3cos45[/tex]
here we know that
[tex]F_1 = 77.3 N[/tex]
[tex]F_2 = 61.7 N[/tex]
[tex]F_3 = 147 N[/tex]
[tex]F_x = 77.3 + 61.7 cos45 + 147 cos45[/tex]
[tex]F_x = 224.9 N[/tex]
Similarly in Y direction we will have
[tex]F_y = F_3 sin45 - F_2 sin45[/tex]
[tex]F_y = (147 - 61.7)sin45[/tex]
[tex]F_y = 60.3 N[/tex]
Now the net force on the donkey is given as
[tex]F_{net} = \sqrt{F_x^2 + F_y^2}[/tex]
[tex]F_{net} = \sqrt{224.9^2 + 60.3^2}[/tex]
[tex]F_{net} = 232.8 N[/tex]
Now direction of force is given as
[tex]tan\theta = \frac{F_y}{F_x}[/tex]
[tex]tan\theta = \frac{60.3}{224.9}[/tex]
[tex]\theta = 15^o[/tex] towards right so it is -15 degree