Answer:
The current when the filament at room temperature is 11.84 A.
Explanation:
Given that,
Thermal coefficient of resistivity [tex]\alpha=4.4\times10^{-3}\ K^{-1}[/tex]
Initial temperature = 293 K
Voltage = 140 Volt
Final temperature = 2900 K
Current = 0.95 A
Suppose we find the numerical value of the current when the filament is at room temperature
So, We use the equation of resistance of a material changes with temperature
[tex]R=R_{0}(1+\alpha(T_{2}-T_{1}))[/tex]....(I)
Using ohm's law for value of resistance
[tex]V = I R[/tex]
[tex]R = \dfrac{V}{I}[/tex]
Put the value of resistance in the equation (I)
[tex]\dfrac{V}{I}=\dfrac{V}{I_{0}}(1+\alpha(T_{2}-T_{1}))[/tex]
[tex]I_{0}=I(1+\alpha(T_{2}-T_{1}))[/tex]
Put the value into the formula
[tex]I_{0}=0.95(1+4.4\times10^{-3}(2900-293))[/tex]
[tex]I_{0}=11.84\ A[/tex]
Hence, The current when the filament at room temperature is 11.84 A.