Answer:
Power per unit area released by the body is [tex]526.18 Watt/m^2[/tex].
Explanation:
Stefan-Boltzmann Law is given as:
[tex]\frac{Power}{Area}=\sigma T^4[/tex]
Where:
[tex]\sigma =5.6704\times 10^{-8} Watt/m^2K^4[/tex] Stefan-Boltzmann constant
T = Absolute temperature of the body
The body has an average surface temperature of approximately,T= 99°F
T= 99°F
[tex](T(K)-273.15)=(T(^oF)-32)\times \frac{5}{9}[/tex]
[tex]T(K)-273.15=((99)-32)\times \frac{5}{9}[/tex]
T = 99°F= 310.37 K
Power per unit area released by the body:
[tex]=5.6704\times 10^{-8} Watt/m^2K^4\times (310.37 K)^4=526.18 Watt/m^2[/tex]