Answer:
[tex]1,500\ ft^2[/tex]
Step-by-step explanation:
Let
L ----> the length of the rectangular garden in feet
w ---> the width of the rectangular garden in feet
step 1
Find the width
we know that
The perimeter of the rectangular garden is
[tex]P=2(L+W)[/tex]
[tex]P=170\ ft[/tex]
so
[tex]170=2(L+W)[/tex]
Simplify
[tex]85=(L+W)[/tex] ----> equation A
[tex]L=2W+10[/tex] ----> equation B
substitute equation B in equation A and solve for W
[tex]85=(2W+10+W)[/tex]
[tex]85-10=3W[/tex]
[tex]3W=75[/tex]
[tex]W=25\ ft[/tex]
Find the value of L
[tex]L=2(25)+10=60\ ft[/tex]
step 2
Find the area
we know that
The area of the rectangular garden is
[tex]A=(LW)[/tex]
substitute the values
[tex]A=(60)(25)=1,500\ ft^2[/tex]