Respuesta :
Answer:
For A: The [tex]K_p[/tex] for the given reaction is [tex]4.0\times 10^1[/tex]
For B: The [tex]K_c[/tex] for the given reaction is 1642.
Explanation:
The given chemical reaction follows:
[tex]2NO(g)+Cl_2(g)\rightleftharpoons 2NOCl(g)[/tex]
- For A:
The expression of [tex]K_p[/tex] for the above reaction follows:
[tex]K_p=\frac{(p_{NOCl})^2}{(p_{NO})^2\times p_{Cl_2}}[/tex]
We are given:
[tex]p_{NOCl}=0.24 atm\\p_{NO}=9.10\times 10^{-2}atm=0.0910atm\\p_{Cl_2}=0.174atm[/tex]
Putting values in above equation, we get:
[tex]K_p=\frac{(0.24)^2}{(0.0910)^2\times 0.174}\\\\K_p=4.0\times 10^1[/tex]
Hence, the [tex]K_p[/tex] for the given reaction is [tex]4.0\times 10^1[/tex]
- For B:
Relation of [tex]K_p[/tex] with [tex]K_c[/tex] is given by the formula:
[tex]K_p=K_c(RT)^{\Delta ng}[/tex]
where,
[tex]K_p[/tex] = equilibrium constant in terms of partial pressure = [tex]4.0\times 10^1[/tex]
[tex]K_c[/tex] = equilibrium constant in terms of concentration = ?
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature = 500 K
[tex]\Delta ng[/tex] = change in number of moles of gas particles = [tex]n_{products}-n_{reactants}=2-3=-1[/tex]
Putting values in above equation, we get:
[tex]4.0\times 10^1=K_c\times (0.0821\times 500)^{-1}\\\\K_c=\frac{4.0\times 10^1}{(0.0821\times 500)^{-1})}=1642[/tex]
Hence, the [tex]K_c[/tex] for the given reaction is 1642.
For this reaction, the Kc is 1700.
What is Kp?
Kp is use to denote the equilibrium constant in a gas phase reaction. We have the values of the partial pressures as follows;
PNO = 9.10×10−2 atm
PCl2 = 0.174 atm
PNOCl = 0.24 atm
Now;
Kp = (PNOCl )^2/(PNO)^2 * PCl2
Kp = (0.24 atm)^2/( 9.10×10−2 atm)^2 * 0.174 atm
Kp =40.86
Now;
Kp=Kc(RT)^Δng
Kc = Kp/(RT)^Δng
Kc = 40.86/(0.082 * 500)^-1
Kc = 1700
Learn more about Kp:https://brainly.com/question/13690710