Answer:
[tex]\lambda=525.37\ pm[/tex]
Explanation:
Given,
Velocity of the neutron = 753 m/s
The expression for the deBroglie wavelength is:
[tex]\lambda=\frac {h}{m\times v}[/tex]
Where,
[tex]\lambda[/tex] is the deBroglie wavelength
h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]
m is the mass of neutron having value [tex]1.6749\times 10^{-27}\ kg[/tex]
v is the speed of neutron = 753 m/s
Applying in the equation as:
[tex]\lambda=\frac {h}{m\times v}[/tex]
[tex]\lambda=\frac{6.626\times 10^{-34}}{1.6749\times 10^{-27}\times 753}\ m[/tex]
[tex]\lambda==\frac{10^{-34}\times \:6.626}{10^{-27}\times \:1261.1997}\ m[/tex]
[tex]\lambda==\frac{6.626}{12611997000}\ m[/tex]
[tex]\lambda=5.2537\times 10^{-10}\ m[/tex]
1 m = 10¹² pm
So,
[tex]\lambda=525.37\ pm[/tex]