Respuesta :

Answer:

[tex]C_{mp}=332.8046\ m/s[/tex]

[tex]C_{avg}=375.4542\ m/s[/tex]

[tex]C_{rms}=407.6007\ m/s[/tex]

Explanation:

The expression for the most probable speed is:

[tex]C_{mp}=\sqrt {\dfrac {2RT}{M}}[/tex]

R is Gas constant having value = 8.314 J / K mol

M is the molar mass of gas

Given that : The gas is Carbon dioxide (Corrected and assumed)

Molar mass of [tex]CO_2[/tex] = 44.01 g/mol

Also, 1 g = 0.001 kg

So, Molar mass of [tex]CO_2[/tex] = 0.04401 kg/mol

Temperature = 20°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (20 + 273.15) K = 293.15 K  

T = 293.15 K

Thus,

[tex]C_{mp}=\sqrt {\frac{2\times 8.314\times 293.15}{0.04401}}[/tex]

[tex]C_{mp}=\sqrt{\frac{4874.4982}{0.04401}}[/tex]

[tex]C_{mp}=\sqrt{110758.87752}[/tex]

[tex]C_{mp}=332.8046\ m/s[/tex]

The expression for the mean speed is:

[tex]C_{avg}=\sqrt {\dfrac{8RT}{\pi M}}[/tex]

R is Gas constant having value = 8.314 J / K mol

M is the molar mass of gas

So, Molar mass of [tex]CO_2[/tex] = 0.04401 kg/mol

T = 293.15 K

Thus,

[tex]C_{avg}=\sqrt{\frac{8\times 8.314\times 293.15}{\frac{22}{7}\times 0.04401}}[/tex]

[tex]C_{avg}=\sqrt{\frac{19497.9928}{0.13831}}[/tex]

[tex]C_{avg}=375.4542\ m/s[/tex]

The expression for the root mean square speed is:

[tex]C_{rms}=\sqrt {\dfrac {3RT}{M}}[/tex]

R is Gas constant having value = 8.314 J / K mol

M is the molar mass of gas

Molar mass of [tex]CO_2[/tex] = 0.04401 kg/mol

Temperature 293.15 K

Thus,

[tex]C_{rms}=\sqrt{\frac{3\times 8.314\times 293.15}{0.04401}}[/tex]

[tex]C_{rms}=\sqrt{\frac{7311.7473}{0.04401}}[/tex]

[tex]C_{rms}=407.6007\ m/s[/tex]