Answer:
[tex]a = 3.45 m/s^2[/tex]
[tex]theta = 43.5 degree[/tex] North of East
Explanation:
two forces on the hockey puck is given as
[tex]F_1 = 0.320 N[/tex] at 15 degree North of East
[tex]F_1 = 0.320(cos15 \hat i + sin15\hat j)[/tex]
[tex]F_1 = 0.31 \hat i + 0.08 \hat j[/tex]
similarly other force is
[tex]F_2 = 0.60 N[/tex] at 55 degree North of East
[tex]F_2 = 0.60(cos55 \hat i + sin55 \hat j)[/tex]
[tex]F_2 = 0.34 \hat i + 0.49 \hat j[/tex]
Now net force on the puck is given as
[tex]F = F_1 + F_2[/tex]
[tex]F = (0.31 + 0.34)\hat i + (0.08 + 0.49)\hat j[/tex]
[tex]F = 0.65 \hat i + 0.57\hat j[/tex]
magnitude of force is given as
[tex]F = \sqrt{0.65^2 + 0.57^2}[/tex]
[tex]F = 0.86 N[/tex]
magnitude of acceleration
[tex]a = \frac{F}{m}[/tex]
[tex]a = \frac{0.86}{0.25} [/tex]
[tex]a = 3.45 m/s^2[/tex]
direction of acceleration is given as
[tex]tan\theta = \frac{0.57}{0.60}[/tex]
[tex]theta = 43.5 degree[/tex] North of East