Calculate the radius of tantalum (Ta) atom, given that Ta has a BCC crystal structure, a density of 16.6 g/cm, and an atomic weight of 180.9 g/mol. (Avogadro number, 6.023 x 103 atoms/mol).

Respuesta :

Answer:

The radius of tantalum (Ta) atom is [tex]R = 1.43 \times 10^{-8} \:cm = 0.143 \:nm[/tex]

Explanation:

From the Body-centered cubic (BBC) crystal structure we know that a unit cell length a and atomic radius R are related through

[tex]a=\frac{4R}{\sqrt{3} }[/tex]

So the volume of the unit cell [tex]V_{c}[/tex] is

[tex]V_{c}= a^3=(\frac{4R}{\sqrt{3} } )^3=\frac{64\sqrt{3}R^3}{9}[/tex]

We can compute the theoretical density ρ through the following relationship

[tex]\rho=\frac{nA}{V_{c}N_{a}}[/tex]

where

n = number of atoms associated with each unit cell

A = atomic weight

[tex]V_{c}[/tex] = volume of the unit cell

[tex]N_{a}[/tex] =  Avogadro’s number ([tex]6.023 \times 10^{23}[/tex] atoms/mol)

From the information given:

A = 180.9 g/mol

ρ = 16.6 g/cm^3

Since the crystal structure is BCC, n, the number of atoms per unit cell, is 2.

We can use the theoretical density ρ to find the radio R as follows:

[tex]\rho=\frac{nA}{V_{c}N_{a}}\\\rho=\frac{nA}{(\frac{64\sqrt{3}R^3}{9})N_{a}}[/tex]

Solving for R

[tex]\rho=\frac{nA}{(\frac{64\sqrt{3}R^3}{9})N_{a}}\\\frac{64\sqrt{3}R^3}{9}=\frac{nA}{\rho N_{a}}\\R^3=\frac{nA}{\rho N_{a}}\cdot \frac{1}{\frac{64\sqrt{3}}{9}} \\R=\sqrt[3]{\frac{nA}{\rho N_{a}}\cdot \frac{1}{\frac{64\sqrt{3}}{9}}}[/tex]

Substitution for the various parameters into above equation yields

[tex]R=\sqrt[3]{\frac{2\cdot 180.9}{16.6\cdot 6.023 \times 10^{23}}\cdot \frac{1}{\frac{64\sqrt{3}}{9}}}\\R = 1.43 \times 10^{-8} \:cm = 0.143 \:nm[/tex]