contestada

If the area of the triangle ABC is 450 cm2. measure of angle B = 82° , C = 56° , find the value of a.​

Respuesta :

Answer:

If the area of the triangle ABC is [tex]450 \mathrm{cm}^{2}[/tex] ,then value of a is 27cm.

Solution:

Given Data:

Area of the triangle ABC is [tex]450 \mathrm{cm}^{2}[/tex]

[tex]\angle \mathrm{B}=82^{\circ}[/tex]

[tex]\angle \mathrm{C}=56^{0}[/tex]

To Find:

Value of a?

Step 1:

[tex]\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}[/tex]

[tex]\angle \mathrm{A}=42^{0}[/tex]

Step 2:

[tex]\mathrm{E}=\frac{1}{2} \alpha \mathrm{b} \sin \mathrm{C}[/tex]

By Law of Sines

[tex]\frac{\alpha}{\sin A}=\frac{b}{\sin B}[/tex]

Simplify the above expression

[tex]\mathrm{b}=\frac{\alpha \sin B}{\sin A}[/tex]

[tex]E=\frac{1}{2} \alpha\left(\frac{\alpha \sin B}{\sin A}\right) \sin C[/tex]  --- eqn 1

Step 3:

[tex]\begin{aligned} E &=\frac{1}{2} \alpha^{2}\left(\frac{\sin B \sin C}{\sin A}\right) \\ \alpha &=\sqrt{\frac{2 E \sin A}{\sin B \sin C}} \end{aligned}[/tex]

Step 4:

Substitute the A, B and C value from the given Data.

[tex]\alpha=\sqrt{\frac{2.450 \sin 42^{\circ}}{\sin 82^{\circ} \sin 56^{\circ}}}[/tex]

Apply the Sin theta respective value.

[tex]=\sqrt{\frac{602.22}{0,82}}[/tex]

[tex]\alpha=>27 \mathrm{cm}[/tex]

From the above we finally got the value of "a" which is 27 cm.