Answer:
Explanation:
std rate $9.00
actual rate $8.50
standard hours 5,200
Total variance: 390 Favorable
Rate variance:
[tex](standard\:rate-actual\:rate) \times actual \: hours = DL \: rate \: variance[/tex]
Efficiency
[tex](standard\:hours-actual\:hours) \times standard \: rate = DL \: efficiency \: variance[/tex]
Total:
rate + efficiency
[tex](standard\:rate-actual\:rate) \times actual \: hours + (standard\:hours-actual\:hours) \times standard \: rate = 390[/tex]
We plug our know values and solve:
[tex](9 - 8.5) \times actual \: hours + (5,200-actual\:hours) \times 9 = 390[/tex]
0.5actual hours + 46,800 - 9actual hours = 390
46,800 - 390 = 8.5 actual hours
46,410/8.5 = actual hours = 5,460
now we calculate each variance:
rate: 2,730
[tex](9-8.5) \times 5,460 = DL \: rate \: variance[/tex]
efficiency (2,340)
[tex](5,200-5,460) \times 9 = DL \: efficiency \: variance[/tex]