Respuesta :
Answer:
Explanation:
Given
initial velocity component of engines is
[tex]v_0_x=6380 m/s[/tex]
[tex]v_0_y=6770 m/s[/tex]
time period of engine running=763 s
Displacement in [tex]x=4.50\times 10^6[/tex]
[tex]y=7.27\times 10^6[/tex]
Using [tex]s=ut+\frac{at^2}{2}[/tex] in x and y direction
[tex]x=v_0_x\times t+\frac{at^2}{2}[/tex]
[tex]4.50\times 10^6=6380\times 763+\frac{a\times 763^2}{2}[/tex]
[tex]4.50\times 10^6-4.86\times 10^6=\frac{a\times 763^2}{2}[/tex]
[tex]a=-1.23 m/s^2[/tex]
In y direction
[tex]y=v_0_y\times t+\frac{a't^2}{2}[/tex]
[tex]7.27\times 10^6=6770\times 763+\frac{a\times 763^2}{2}[/tex]
[tex]7.27\times 10^6-5.16\times 10^6=\frac{a\times 763^2}{2}[/tex]
[tex]a=7.24 m/s^2[/tex]
x component[tex]=-1.23 m/s^2[/tex]
y component[tex]=7.24 m/s^2[/tex]
Answer:
a.x component of acceleration of craft=[tex]-0.63 m/s^2[/tex]
b.y component of acceleration of craft=[tex]3.61 m/s^2[/tex]
Explanation:
We are given that two engines are turned on for 763 s.
x component of initial velocity of craft=[tex]v_x_0=6380 m/s[/tex]
y component of initial velocity of craft=[tex]v_y_0=6770 m/s[/tex]
After firing,
x component of displacement of craft=[tex]4.5\times 10^6 m[/tex]
y component of displacement of craft=[tex]7.27\times 10^6 m[/tex]
We know that velocity=[tex]\frac{displacement}{time}[/tex]
x component of final velocity of craft= [tex]\frac{4.5\times 10^6}{763}=5897.78 m/s[/tex]
y component of final velocity of craft=[tex]\frac{7.27\times 10^6}{763}=9528.18 m/s[/tex]
We know that acceleration =[tex]\frac{v-u}{t}[/tex]
a.x component of acceleration of craft=[tex]\frac{5897.78-6380}{763}=-0.63 m/s^2[/tex]
b.y component of acceleration of craft=[tex]\frac{9528.18-6770}{763}=3.61 m/s^2[/tex]