two engines are turned on for 763 s at a moment when the velocity of the craft has x and y components of v0x = 6380 m/s and v0y = 6770 m/s. While the engines are firing, the craft undergoes a displacement that has components of x = 4.50 x 106 m and y = 7.27 x 106 m. Find the (a) x and (b) y components of the craft's acceleration.

Respuesta :

Answer:

Explanation:

Given

initial velocity component of engines is

[tex]v_0_x=6380 m/s[/tex]

[tex]v_0_y=6770 m/s[/tex]

time period of engine running=763 s

Displacement in [tex]x=4.50\times 10^6[/tex]

[tex]y=7.27\times 10^6[/tex]

Using [tex]s=ut+\frac{at^2}{2}[/tex] in x and y direction

[tex]x=v_0_x\times t+\frac{at^2}{2}[/tex]

[tex]4.50\times 10^6=6380\times 763+\frac{a\times 763^2}{2}[/tex]

[tex]4.50\times 10^6-4.86\times 10^6=\frac{a\times 763^2}{2}[/tex]

[tex]a=-1.23 m/s^2[/tex]

In y direction

[tex]y=v_0_y\times t+\frac{a't^2}{2}[/tex]

[tex]7.27\times 10^6=6770\times 763+\frac{a\times 763^2}{2}[/tex]

[tex]7.27\times 10^6-5.16\times 10^6=\frac{a\times 763^2}{2}[/tex]

[tex]a=7.24 m/s^2[/tex]

x component[tex]=-1.23 m/s^2[/tex]

y component[tex]=7.24 m/s^2[/tex]

Answer:

a.x component of acceleration of craft=[tex]-0.63 m/s^2[/tex]

b.y component of acceleration of craft=[tex]3.61 m/s^2[/tex]

Explanation:

We are given that two engines are turned on for 763 s.

x component of initial velocity of craft=[tex]v_x_0=6380 m/s[/tex]

y component of initial velocity of craft=[tex]v_y_0=6770 m/s[/tex]

After firing,

x component of displacement of craft=[tex]4.5\times 10^6 m[/tex]

y component of displacement of craft=[tex]7.27\times 10^6 m[/tex]

We know that velocity=[tex]\frac{displacement}{time}[/tex]

x component of final velocity of craft= [tex]\frac{4.5\times 10^6}{763}=5897.78 m/s[/tex]

y component of final velocity of craft=[tex]\frac{7.27\times 10^6}{763}=9528.18 m/s[/tex]

We know that acceleration =[tex]\frac{v-u}{t}[/tex]

a.x component of acceleration of craft=[tex]\frac{5897.78-6380}{763}=-0.63 m/s^2[/tex]

b.y component of acceleration of craft=[tex]\frac{9528.18-6770}{763}=3.61 m/s^2[/tex]