Find the points on the surface y^2 = 81 + xz that are closest to the origin. (x, y, z) = ______ (smaller y-value) (x, y, z) = ___________ (larger y-value)

Respuesta :

You want to minimize [tex]x^2+y^2+z^2[/tex] subject to [tex]y^2=81+xz[/tex]. The distance of any point on the given surface to the origin is actually [tex]\sqrt{x^2+y^2+z^2}[/tex], but it's easy to show that [tex]\sqrt{f(x)}[/tex] and [tex]f(x)[/tex] share the same critical points.

The Lagrangian is

[tex]L(x,y,z,\lambda)=x^2+y^2+z^2+\lambda(y^2-81-xz)[/tex]

with critical points when

[tex]L_x=2x-\lambda z=0\implies2x=\lambda z[/tex]

[tex]L_y=2y+2\lambda y=2y(1+\lambda)=0\implies y=0\text{ or }\lambda=-1[/tex]

[tex]L_z=2z-\lambda x=0\implies 2z=\lambda x[/tex]

[tex]L_\lambda=y^2-81-xz=0[/tex]

If [tex]y=0[/tex], then

[tex]L_x=0\implies\lambda=\dfrac{2x}z[/tex]

[tex]L_z=0\implies\lambda=\dfrac{2z}x[/tex]

[tex]\implies\dfrac{2x}z=\dfrac{2z}x\implies x^2=z^2\implies x=\pm z[/tex]

[tex]L_\lambda=0\implies xz=-81\implies x^2=-81\text{ or }-x^2=-81[/tex]

which tells us about critical points at (-9, 0, -9), (-9, 0, 9), (9, 0, -9), and (9, 0, 9).

If [tex]\lambda=-1[/tex], then

[tex]\begin{cases}2x=-z\\2z=-x\end{cases}\implies x=z=0[/tex]

[tex]L_\lambda=0\implies y^2=81\implies y=\pm9[/tex]

which gives 2 more critical points, (0, -9, 0) and (0, 9, 0).

Let [tex]d(x,y,z)=\sqrt{x^2+y^2+z^2}[/tex]. Then

[tex]\begin{cases}d(-9,0,-9)=9\sqrt2\\d(-9,0,9)=9\sqrt2\\d(9,0,-9)=9\sqrt2\\d(9,0,9)=9\sqrt2\\d(0,-9,0)=9\\d(0,9,0)=9\end{cases}[/tex]

so the closest points are (0, -9, 0) and (0, 9, 0).

To answer this question it is necessary to use the procedure "Lagrange Multipliers" to find the minimum distance between the curve and the one point ( the origin )

Solution is:

P ( 0 , 9 , 0 )     and   P ( 0 , - 9 , 0 )

Closets mean, minimum distance

We know,  how to express the distance (d)  between two points P( x₁,y₁,z₁ )

and Q (x₂, y₂, z₂)

d = √ (x₁ - x₂ )² + ( y₁ - y₂ )² + ( z₁ - z₂)²              (1)

now,  if the point P is a general point and Q is the origin, equation (1) becomes

d = √ x² + y² + z²

And as   √ f(x)  and f(x),  both have the same critical points, we can use the function f(x) which is easier to work with.

Therefore now we got a function f(x) and a constraint the minimum distance, we are in condition to apply

f(x) = x² + y² + z²                          y² - xz - 81 = g(x)

L [ (x² + y² + z²)  + λ (   y² - xz - 81 )

Tacking partial derivatives:

Lx = 2× x -  λ × z

equating to zero     2× x -  λ × z  = 0     ( 2 )

Ly = 2×y + 2×   λ × y        Ly = 0         2×y + 2×   λ × y    = 0

y +    λ × y = 0          y× ( 1 +    λ ) = 0   then

y = 0    or  1 + λ = 0      λ = -1

Lz = 2×z - λ×x  = 0        ⇒    2×z + x = 0  ( 3)

From equations (2) and (3)

2× x + z  = 0      ⇒  z = -2×x

 2×z + x = 0        

By substitution

2× ( -2×x) + x = 0

- 3×x = 0      

Then

x = 0   and y = 0

On the curve     y² - xz - 81 = 0

Plugging points  x = 0 and  y = 0

y² - 81 = 0         ⇒    y = √ 81       y = ± 9

Wegot the points:

P ( 0 , 9 , 0 )  and   P ( 0 , - 9 , 0 )

These two points are equidistant from the origin, and are the largest and the shortest from the curve

Related Link : https://brainly.com/question/7311052