Answer:
t = 1019.76 sec
Step-by-step explanation:
object mass = 20 kg
released from rest = 4000 m above
proportionality constant(b) = 50 N-sec/m
initial velocity = v₀
we know,
[tex]v(t) = \dfrac{mg}{b}+(v_0- \dfrac{mg}{b})e^{\dfrac{-bt}{m}}[/tex]
and
[tex]x(t) = \dfrac{mg}{b}t+\dfrac{m}{b}(v_0- \dfrac{mg}{b})(1-e^{\dfrac{-bt}{m}})[/tex]
[tex]x(t) = \dfrac{20\times 9.81}{50}t+\dfrac{20}{50}(0- \dfrac{20\times 9.81}{50})(1-e^{\dfrac{-50t}{20}})[/tex]
[tex]x(t) = 3.924 t - 1.5696(1-e^{-2.50t})[/tex]
x(t) = 4000
[tex]4000 = 3.924 t - 1.5696(1-e^{-2.50t})[/tex]
neglecting [tex]e^{-2.50t}[/tex] we get
4000 = 3.924 t - 1.5696
t = 1019.76 sec