contestada

A baseball is hit at ground level. The ball is observed to reach its maximum height above ground level 3.0 s after being hit. And 2.5 s after reaching this maximum height, the ball is observed to barely clear a fence that is 97.5 m from where it was hit. How high is the fence?

Respuesta :

Answer:

y= 13.475 m

Explanation:

 Kinematics of the ball : The ball describes a parabolic trajectory.

Because ball move with uniformly accelerated movement in y we apply the following formulas:

[tex]v_{fy} = v_{oy} -gt[/tex]  Formula (1)

[tex]y= y_{o} +v_{oy} *t - \frac{1}{2} *g*t^{2}[/tex] Formula (2)

Where:  

y :  vertical position for any time t  (m)  

y₀ : Initial vertical position   (m)

t :    time in seconds (s)

[tex]v_{oy}[/tex]      : Initial speed in y (m/s)  

[tex]v_{fy}[/tex]      : Final speed in y (m/s)

g: acceleration due to gravity (m/s)²

Problem development

We apply formula 1 when the ball reaches its maximum height to obtain the initial velocity at y, [tex]v_{oy}[/tex]  :

at maximum height : t= 3 s,  [tex]v_{fy}[/tex]  = 0

[tex]v_{fy} = v_{oy} -g*t[/tex]

[tex]0 = v_{oy} -9.8*3[/tex]

[tex]v_{oy} = 29.4 \frac{m}{s}[/tex]

We calculate the requested height using formula 2

t= 3s+2.5s = 5.5 s, [tex]v_{oy} = 29.4 \frac{m}{s}[/tex] , y₀ = 0

[tex]y= y_{o} +v_{oy} *t - \frac{1}{2} *g*t^{2}[/tex]

[tex]y= 0 +(29.4) *(5.5) - \frac{1}{2} *(9.8)*(5.5)^{2}[/tex]

y=13.475 m