Answer:
[tex]x=\dfrac{r}{\sqrt2}[/tex]
Explanation:
Given that
Radius =r
Electric filed =E
Q=Charge on the ring
The electric filed at distance x given as
[tex]E=K\dfrac{Q}{(r^2+x^2)^{3/2}}[/tex]
For maximum condition
[tex]\dfrac{dE}{dx}=0[/tex]
[tex]E=K{Q}{(r^2+x^2)^{-3/2}}[/tex]
[tex]\dfrac{dE}{dx}=K{Q}{(r^2+x^2)^{-3/2}}-\dfrac{3}{2}\times 2\times x\times K{Q}{(r^2+x^2)^{-5/2}}[/tex]
For maximum condition
[tex]\dfrac{dE}{dx}=0[/tex]
[tex]K{Q}{(r^2+x^2)^{-3/2}}-\dfrac{3}{2}\times 2\times x\times K{Q}{(r^2+x^2)^{-5/2}}=0[/tex]
[tex]r^2+x^2-3x^2=0[/tex]
[tex]x=\dfrac{r}{\sqrt2}[/tex]
At [tex]x=\dfrac{r}{\sqrt2}[/tex] the electric field will be maximum.