Respuesta :

Answer:

The force induced on the aircraft is 2.60 N

Solution:

As per the question:

Power transmitted, [tex]P_{t} = 8 kW = 8000 W[/tex]

Now, the force, F is given by:

[tex]P_{t} = Force(F)\times velocity(v) = Fv[/tex]               (1)

where

v = velocity

Now,

For a geo-stationary satellite, the centripetal force, [tex]F_{c}[/tex] is provided by the gravitational force, [tex]F_{G}[/tex]:

[tex]F_{c} = F_{G}[/tex]

[tex]\frac{mv^{2}}{R} = \frac{GM_{e}m{R^{2}}[/tex]

Thus from the above, velocity comes out to be:

[tex]v = \sqrt{\frac{GM_{e}}{R}}[/tex]

[tex]v = \sqrt{\frac{6.67\times 10^{- 11}\times 5.979\times 10^{24}}{42166\times 10^{3}}} = 3075.36 m/ s[/tex]

where

R = [tex]R_{e} + H[/tex]

R = [tex]\sqrt{GM_{e}(\frac{T}{2\pi})^{2}}[/tex]

where

G = Gravitational constant

T = Time period of rotation of Earth

R is calculated as 42166 km

Now, from eqn (1):

[tex]8000 = F\times 3075.36[/tex]

F = 2.60 N