Respuesta :

Answer:

The arithmetic combinations of given functions are (f + g)(x) = 2x, (f - g)(x) = 4,  (f [tex]\times[/tex] g)(x) = [tex]\mathrm{x}^{2}-4[/tex] , [tex]\left(\frac{f}{g}\right)(\mathrm{x})=\frac{x+2}{x-2}[/tex]

Solution:  

Given, two functions are f(x) = x + 2 and g(x) = x – 2

We need to find the arithmetic combinations of given two functions .

Arithmetic functions of f(x) and g(x) are (f + g)(x), (f – g)(x), (f [tex]\times[/tex] g)(x), [tex]\left(\frac{f}{g}\right)(\mathrm{x})[/tex]

Now, (f + g)(x) = f(x) + g(x)

= x + 2 +x – 2

= 2x

Therefore (f + g)(x) = 2x

similarly,

(f - g)(x) = f(x) - g(x)

= x + 2 –(x – 2)

= x + 2 –x + 2

= 4

Therefore (f - g)(x) = 4

similarly,

(f [tex]\times[/tex] g)(x) = f(x) [tex]\times[/tex] g(x)

= (x + 2) [tex]\times[/tex] (x – 2)

= x [tex]\times[/tex] (x – 2) + 2 [tex]\times[/tex] (x -2)

[tex]=x^{2}-2 x+2 x-4[/tex]

[tex]=x^{2}-4[/tex]

Therefore  (f [tex]\times[/tex] g)(x) = [tex]x^{2}-4[/tex]

now,

[tex]\left(\frac{f}{g}\right)(\mathrm{x})=\frac{f(x)}{g(x)}[/tex]

[tex]=\frac{x+2}{x-2}[/tex]

[tex](\frac{f}{g})(x)[/tex] = [tex]\frac{x+2}{x-2}[/tex]

Hence arithmetic combinations of given functions are (f + g)(x) = 2x, (f - g)(x) = 4,  (f [tex]\times[/tex] g)(x) = [tex]\mathrm{x}^{2}-4[/tex] , [tex]\left(\frac{f}{g}\right)(\mathrm{x})=\frac{x+2}{x-2}[/tex]