Answer: 106. 25 m
Explanation:
In this situation the following equations will be useful:
[tex]V=V_{o}+at[/tex] (1)
[tex]V^{2}=V_{o}^{2}+2ad[/tex] (2)
Where:
[tex]V[/tex] is the object’s final velocity
[tex]V_{o}=25 m/s[/tex] is the object’s initial velocity
[tex]a=-1.5 m/s^{2}[/tex] is the object's acceleration
[tex]t=5 s[/tex] is the time
[tex]d[/tex] is the distance traveled
Finding [tex]V[/tex] from (1):
[tex]V=25 m/s+(-1.5 m/s^{2})(5 s)[/tex] (3)
[tex]V=17.5 m/s[/tex] (4)
Substituting (4) in (2):
[tex](17.5 m/s)^{2}=(25 m/s)^{2}+2(-1.5 m/s^{2})d[/tex] (5)
Finding [tex]d[/tex]:
[tex]d=106.25 m[/tex]