Respuesta :

ANSWER:  

The area of the triangle bounded by the y-axis is  [tex]\frac{7938}{4225} \sqrt{65} \text { unit }^{2}[/tex]

SOLUTION:

Given, [tex]f(x)=9-\frac{-4}{7} x[/tex]

Consider f(x) = y. Hence we get

[tex]f(x)=9-\frac{-4}{7} x[/tex] --- eqn 1

[tex]y=9-\frac{4}{7} x[/tex]

On rewriting the terms we get

4x + 7y – 63 = 0

As the triangle is bounded by two perpendicular lines, it is an right angle triangle with y-axis as hypotenuse.

Area of right angle triangle = [tex]\frac{1}{ab}[/tex] where a, b are lengths of sides other than hypotenuse.

So, we need find length of f(x) and its perpendicular line.

First let us find perpendicular line equation.

Slope of f(x) = [tex]\frac{-x \text { coefficient }}{y \text { coefficient }}=\frac{-4}{7}[/tex]

So, slope of perpendicular line = [tex]\frac{-1}{\text {slope of } f(x)}=\frac{7}{4}[/tex]

Perpendicular line is passing through origin(0,0).So by using point slope formula,

[tex]y-y_{1}=m\left(x-x_{1}\right)[/tex]

Where m is the slope and [tex]\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)[/tex]

[tex]y-0=\frac{7}{4}(x-0)[/tex]

[tex]y=\frac{7}{4} x[/tex] --- eqn 2

4y = 7x

7x – 4y = 0  

now, let us find the vertices of triangle, one of them is origin, second one is point of intersection of y-axis and f(x)

for points on y-axis x will be zero, to get y value, put x =0 int f(x)

0 + 7y – 63 = 0

7y = 63

y = 9

Hence, the point of intersection is (0, 9)

Third vertex is point of intersection of f(x) and its perpendicular line.

So, solve (1) and (2)

[tex]\begin{array}{l}{9-\frac{4}{7} x=\frac{7}{4} x} \\\\ {9 \times 4-\frac{4 \times 4}{7} x=7 x} \\\\ {36 \times 7-16 x=7 \times 7 x} \\\\ {252-16 x=49 x} \\\\ {49 x+16 x=252} \\\\ {65 x=252} \\\\ {x=\frac{252}{65}}\end{array}[/tex]

Put x value in (2)

[tex]\begin{array}{l}{y=\frac{7}{4} \times \frac{252}{65}} \\\\ {y=\frac{441}{65}}\end{array}[/tex]

So, the point of intersection is [tex]\left(\frac{252}{65}, \frac{441}{65}\right)[/tex]

Length of f(x) is distance between [tex]\left(\frac{252}{65}, \frac{441}{65}\right)[/tex] and (0,9)

[tex]\begin{aligned} \text { Length } &=\sqrt{\left(0-\frac{252}{65}\right)^{2}+\left(9-\frac{441}{65}\right)^{2}} \\ &=\sqrt{\left(\frac{252}{65}\right)^{2}+0} \\ &=\frac{252}{65} \end{aligned}[/tex]

Now, length of perpendicular of f(x) is distance between [tex]\left(\frac{252}{65}, \frac{441}{65}\right) \text { and }(0,0)[/tex]

[tex]\begin{aligned} \text { Length } &=\sqrt{\left(0-\frac{252}{65}\right)^{2}+\left(0-\frac{441}{65}\right)^{2}} \\ &=\sqrt{\left(\frac{252}{65}\right)^{2}+\left(\frac{441}{65}\right)^{2}} \\ &=\frac{\sqrt{(12 \times 21)^{2}+(21 \times 21)^{2}}}{65} \\ &=\frac{63}{65} \sqrt{65} \end{aligned}[/tex]

Now, area of right angle triangle = [tex]\frac{1}{2} \times \frac{252}{65} \times \frac{63}{65} \sqrt{65}[/tex]

[tex]=\frac{7938}{4225} \sqrt{65} \text { unit }^{2}[/tex]

Hence, the area of the triangle is [tex]\frac{7938}{4225} \sqrt{65} \text { unit }^{2}[/tex]