Can someone pls simplify 2x-1/x^2 -2x-3 + 1/x-3

Answer:
see explanation
Step-by-step explanation:
Given
[tex]\frac{2x-1}{x^2-2x-3}[/tex] + [tex]\frac{1}{x-3}[/tex]
Factorise the denominator of the first fraction
x² - 2x - 3 = (x - 3)(x + 1), then
= [tex]\frac{2x-1}{(x-3)(x+1)}[/tex] + [tex]\frac{1}{x-3}[/tex]
To add we require the fractions to have a common denominator.
Multiply the numerator/denominator of the fraction on the right by (x + 1)
= [tex]\frac{2x-1}{(x-3)(x+1)}[/tex] + [tex]\frac{x+1}{(x-3)(x+1)}[/tex]
Now add the terms on the numerators leaving the denominator
= [tex]\frac{2x-1+x+1}{(x-3)(x+1)}[/tex]
= [tex]\frac{3x}{(x-3)(x+1)}[/tex]
In order to simplify [tex]\frac{2x - 1}{x^2 - 2x - 3} + \frac{1}{x - 3}[/tex] , we would factorize its denominator, [tex]x^2 - 2x - 3[/tex] , then simplify further to get our final answer as: [tex]\frac{3x}{(x - 3)(x +1)}[/tex]
To simplify, [tex]\frac{2x - 1}{x^2 - 2x - 3} + \frac{1}{x - 3}[/tex], first we would need to factorize [tex]x^2 - 2x - 3[/tex], which is the denominator of the first fraction.
[tex]\frac{2x - 1}{x^2 + x -3x - 3} + \frac{1}{x - 3}\\\\\frac{2x - 1}{x(x + 1)-3(x +1)} + \frac{1}{x - 3}\\\\\frac{2x - 1}{(x - 3)(x +1)} + \frac{1}{x - 3}[/tex]
To make both fractions as one:
[tex]\frac{(1)(2x - 1) + (x + 1)(1)}{(x - 3)(x +1)} \\\\\frac{2x - 1 + x + 1}{(x - 3)(x +1)}\\\\[/tex]
[tex]\frac{2x + x - 1 + 1}{(x - 3)(x +1)}\\\\\frac{3x}{(x - 3)(x +1)}\\\\[/tex]
Therefore, in order to simplify [tex]\frac{2x - 1}{x^2 - 2x - 3} + \frac{1}{x - 3}[/tex] , we would factorize its denominator, [tex]x^2 - 2x - 3[/tex] , then simplify further to get our final answer as: [tex]\frac{3x}{(x - 3)(x +1)}[/tex]
Learn more here:
https://brainly.com/question/21191537