If 180° < α < 270°, cos⁡ α = −817, 270° < β < 360°, and sin⁡ β = −45, what is cos⁡ (α + β)?

Respuesta :

Answer:

[tex]cos(\alpha+\beta)=-\frac{84}{85}[/tex]

Step-by-step explanation:

we know that

[tex]cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)[/tex]

Remember the identity

[tex]cos^{2} (x)+sin^2(x)=1[/tex]

step 1

Find the value of [tex]sin(\alpha)[/tex]

we have that

The angle alpha lie on the III Quadrant

so

The values of sine and cosine are negative

[tex]cos(\alpha)=-\frac{8}{17}[/tex]

Find the value of sine

[tex]cos^{2} (\alpha)+sin^2(\alpha)=1[/tex]

substitute

[tex](-\frac{8}{17})^{2}+sin^2(\alpha)=1[/tex]

[tex]sin^2(\alpha)=1-\frac{64}{289}[/tex]

[tex]sin^2(\alpha)=\frac{225}{289}[/tex]

[tex]sin(\alpha)=-\frac{15}{17}[/tex]

step 2

Find the value of [tex]cos(\beta)[/tex]

we have that

The angle beta lie on the IV Quadrant

so

The value of the cosine is positive and the value of the sine is negative

[tex]sin(\beta)=-\frac{4}{5}[/tex]

Find the value of cosine

[tex]cos^{2} (\beta)+sin^2(\beta)=1[/tex]

substitute

[tex](-\frac{4}{5})^{2}+cos^2(\beta)=1[/tex]

[tex]cos^2(\beta)=1-\frac{16}{25}[/tex]

[tex]cos^2(\beta)=\frac{9}{25}[/tex]

[tex]cos(\beta)=\frac{3}{5}[/tex]

step 3

Find cos⁡ (α + β)

[tex]cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)[/tex]

we have

[tex]cos(\alpha)=-\frac{8}{17}[/tex]

[tex]sin(\alpha)=-\frac{15}{17}[/tex]

[tex]sin(\beta)=-\frac{4}{5}[/tex]

[tex]cos(\beta)=\frac{3}{5}[/tex]

substitute

[tex]cos(\alpha+\beta)=-\frac{8}{17}*\frac{3}{5}-(-\frac{15}{17})*(-\frac{4}{5})[/tex]

[tex]cos(\alpha+\beta)=-\frac{24}{85}-\frac{60}{85}[/tex]

[tex]cos(\alpha+\beta)=-\frac{84}{85}[/tex]